
https://aapm.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Af2e30552-df6a-4e5b-acd2-33914fcacf3c&url=https%3A%2F%2Fwww2.radimage.com%2Fl%2F36002%2F2017-10-31%2Fw8d4gc&viewOrigin=offlinePdf


Accelerating iterative coordinate descent using a stored system matrix
Scott S. Hsieha) and John M. Hoffman
Department of Radiological Sciences, UCLA, Los Angeles, CA 90024, USA

Frederic Noo
Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108, USA

(Received 13 November 2018; revised 11 March 2019; accepted for publication 5 April 2019;
published 6 December 2019)

Purpose: The computational burden associated with model-based iterative reconstruction (MBIR) is
still a practical limitation. Iterative coordinate descent (ICD) is an optimization approach for MBIR
that has sometimes been thought to be incompatible with modern computing architectures, especially
graphics processing units (GPUs). The purpose of this work is to accelerate the previously released
open-source FreeCT_ICD to include GPU acceleration and to demonstrate computational perfor-
mance with ICD that is comparable with simultaneous update approaches.
Methods: FreeCT_ICD uses a stored system matrix (SSM), which precalculates the forward projec-
tor in the form of a sparse matrix and then reconstructs on a rotating coordinate grid to exploit helical
symmetry. In our GPU ICD implementation, we shuffle the sinogram memory ordering such that
data access in the sinogram coalesce into fewer transactions. We also update NS voxels in the xy-
plane simultaneously to improve occupancy. Conventional ICD updates voxels sequentially (NS = 1).
Using NS > 1 eliminates existing convergence guarantees. Convergence behavior in a clinical dataset
was therefore studied empirically.
Results: On a pediatric dataset with sinogram size of 736 9 16 9 13860 reconstructed to a matrix
size of 512 9 512 9 128, our code requires about 20 s per iteration on a single GPU compared to
2300 s per iteration for a 6-core CPU using FreeCT_ICD. After 400 iterations, the proposed and ref-
erence codes converge within 2 HU RMS difference (RMSD). Using a wFBP initialization, conver-
gence within 10 HU RMSD is achieved within 4 min. Convergence is similar with NS values
between 1 and 256, and NS = 16 was sufficient to achieve maximum performance. Divergence was
not observed until NS > 1024.
Conclusions: With appropriate modifications, ICD may be able to achieve computational perfor-
mance competitive with simultaneous update algorithms currently used for MBIR. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13543]
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1. INTRODUCTION

Statistical iterative reconstruction (SIR) has emerged as a staple
of modern CT.1While SIR has a long history, including similar-
ity with the algebriac reconstruction technique (ART) or simul-
taneous algebraic reconstruction technique (SART) algorithms
used in some of the first CTwork,2 it was not until recently3 that
they were routinely included in commercial scanners.

Statistical iterative reconstruction has several potential
advantages and has been implemented specifically for the
purpose of dose reduction. The dose reduction possible from
SIR varies with the study.4–6 Unfortunately, automated meth-
ods for assessing dose reduction are difficult and traditional
MTF and NPS metrics are not useful.7 Clinical studies com-
paring SIR to filtered backprojection (FBP) have shown an
advantage for SIR at very low doses.8,9 Dose reduction may
be possible because SIR is able to use underlying data statis-
tics.10 While care is needed to avoid missed findings, a mod-
est reduction in protocol mAs can be used in conjunction
with SIR to reduce radiation dose.

A wide variety of SIR approaches are available. One form
of SIR poses reconstruction as an optimization problem over

hundreds of millions of variables,1 which is very time con-
suming to solve. We will refer to this form of SIR, which
relies on optimization of an objective function, as model-
based iterative reconstruction (MBIR) to distinguish it from
other SIR approaches which are currently being used. To
avoid the expensive optimization of MBIR, many commercial
SIR algorithms are proprietary hybrids that strike a compro-
mise between model accuracy, convergence, and computa-
tional speed. For example, the original FBP algorithm2 can
be adapted to include selective denoising.11 While one might
expect a dichotomy between analytic and iterative reconstruc-
tion, the current reality is that commercial reconstruction
algorithms lie on a spectrum between analytic FBP and
MBIR. Fast alternatives to MBIR have appeared, some of
which rely on drastically different principles such as the
encoding of normal tissue patterns through an image patch
dictionary,12 using other patches in the reconstructed volume
as a prior,13 or using neural networks.14 We will focus this
work on optimization-based MBIR, where computation is
still a significant obstacle to adoption.

Broadly speaking, implementations of MBIR can be
divided into two categories: “sequential update”, modifying a
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single voxel at a time (also known as iterative coordinate des-
cent, ICD), or “simultaneous update”, where the entire vol-
ume is updated simultaneously. Over recent years, parallel
computing platforms, especially graphics processing units
(GPUs), have become ubiquitous. These platforms seem to
favor the simultaneous update strategy because they afford
easy and massive parallelization. Simultaneous update of SIR
typically includes a gradient descent core that is further aug-
mented with techniques such as ordered subsets,15 momen-
tum,16 or use of the dual space.17 In contrast, accelerations of
ICD have been studied in relatively little detail. Demonstra-
tions of ICD on the GPU have been performed only recently.
Sabne et al. showed a fast implementation of ICD on two-
dimensional datasets using a wide variety of GPU optimiza-
tions.18 Li et al. extended this work to a three-dimensional
axial scan.19 Ha and Mueller demonstrated ICD on a cone
beam CT dataset acquired in an axial fashion.20 To our
knowledge, efficient reconstruction using GPU-based ICD
has not been demonstrated for diagnostic helical CT.

Our group has recently released FreeCT_ICD, an open-
source reconstruction package that implements ICD on diag-
nostic CT data. Together with efforts to release a repository of
open-source sinogram data,21 the FreeCT packages22,23 could
enable reproducible, extensible community development of
reconstruction software. However, FreeCT_ICD currently
requires several hours to converge to a solution, hampering
further development efforts as well as the long-term viability
of using FreeCT_ICD as a tool for CT imaging research. The
purpose of this work is to report on interim results of the opti-
mization of GPU ICD, an adaptation of FreeCT_ICD that uses
GPU hardware. Another goal is to demonstrate that GPU-
based ICD is possible and practical for third-generation helical
CT. In contrast to conventional wisdom, accelerated ICD
could be competitive with simultaneous update techniques.

In Section 2, we will review the algorithm of FreeCT_ICD
and describe its translation into GPU codes and major design
decisions. In Section 3, we will compare the proposed GPU
code with the reference FreeCT_ICD on a pediatric dataset. We
conclude in Section 4 with a discussion and future outlook.

2. METHODS

2.A. FreeCT_ICD and the stored system matrix

Our code is modeled after our reference software package,
FreeCT_ICD. One of the design goals for our accelerated
GPU ICD code is to reach numerical agreement with the ref-
erence software package in the limit of many iterations. We
briefly review the design of FreeCT_ICD here. The reader is
referred to Ref. [22] for more details.

Like other optimization-based MBIR packages, Free-
CT_ICD implements a solution to the following minimiza-
tion problem:

x̂ ¼ argmin
x

fðy� AxÞTDðy� AxÞ þ RðXÞg (1)

where y is the measured sinogram, x is the reconstructed
image, R is the regularizer, and D is a matrix of data weights.

The current version of FreeCT_ICD does not implement data
weights, and D is therefore the identity matrix. The ICD
approach to solving Eq. (1) has been described elsewhere,
and for the sake of brevity, we will not repeat it here. Thibault
et al. applied it to helical CT with a three-dimensional regu-
larizer1 and described the process in detail. Its adaptation in
the FreeCT package has previously been described.22

In contrast to a conventional approach that reconstructs onto
the Cartesian grid, FreeCT_ICD performs the reconstruction in
a frame of reference that rotates alongside the helical source
trajectory.24 This rotating frame of reference has been proposed
in the past for computational acceleration25,26 and it creates
symmetry in the system matrix A, allowing it to be precom-
puted24,27 as a stored system matrix (SSM). The resulting SSM
requires memory storage in the order of 10 GB,27 but in some
protocols using flying focal spot or low pitch the SSM may
exceed 50 GB. We assume in this work that the SSM is small
enough such that it can reside within system RAM, but we do
not assume that the SSM can fit in GPU RAM. At the time of
this writing, appropriately configured workstations can have an
order of magnitude greater system RAM than GPU RAM.

An advantage of the SSM is that more complex projectors
could be used, without limitation to geometries that can be
computed on-the-fly.28,29 A disadvantage of the rotating-grid
SSM approach employed in this work is the need for eventual
derotation to a Cartesian frame of reference before storage in
picture archiving and communication systems (PACS), lead-
ing to possible resolution loss.

2.B. Parallel update strategy

Equation (1) is a strictly convex and differentiable func-
tion for common choices of the regularizer function and con-
verges if each voxel (or coordinate) is separately and
sequentially optimized as a one-dimensional function.30

Updating every voxel in the desired reconstruction grid once
is considered an iteration of ICD. On the other hand, sequen-
tial updates do not provide enough parallelism for the GPU
to work efficiently. To increase computational performance,
multiple voxels must be updated simultaneously. We update
multiple voxels both in the z-direction and in the xy-plane.

Updates of multiple voxels in the z-direction have been
explored by other groups.20,31 These parallel updates are safe
if the voxels in question are not interacting: that is, if no ray
intersects both voxels and the regularizer does not connect
the two voxels, a modification of one voxel’s value in Eq. (1)
does not affect the optimization of the second voxel. In this
case, updating both voxels simultaneously is mathematically
equivalent to sequential update. We updated every other voxel
in the z-direction, observing small (but nonzero) interactions
between these voxels. The amount of interaction may depend
on the acquisition protocol, including the helical pitch and
slice thickness, but we did not investigate these variations in
this aspect. Instead, we used only the parameters in Table I,
including the common pitch value of 1.

Updating multiple voxels in the xy-plane simultaneously is
much more likely to result in non-trivial interactions and can
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lead to divergence. Nonetheless, this strategy has been
deployed effectively on an empirical basis in other recent
work.18 We chose to update NS voxels in the xy-plane simul-
taneously, where NS is a tunable parameter. Care must be
taken in choosing NS because small values of NS will create
insufficient parallelism, and large values of NS can cause
divergence. One of the goals of this work was to understand
if values of NS exist such that parallelism is saturated but
divergence does not occur.

Within the xy-plane, various strategies have been proposed
for selecting the voxel update ordering, including lexicographic
ordering (left-to-right, top-to-bottom),22 random updates,1 and
a probabilistic update criteria that favors voxels likely to
change.32 In this work, we use a random update strategy where
we create a traversal order that visits each voxel once but in
random order. This could be created, for example, by starting
with a lexicographical ordering and then applying a random
permutation. A single iteration consists of visiting each voxel
once. The traversal order is random but is not changed between
iterations. We briefly investigated using a lexicographical
update ordering but found that this could support only small
values of NS, because adjacent voxels would often be updated
simultaneously, ignoring their strong interaction terms.

For a NZ-slice reconstruction, a set of NS
NZ
2

� �
voxels are

optimized simultaneously. For each of these voxels, the pro-
gram optimizes Eq. (1) for each of the voxels in a one-dimen-
sional sense assuming no other voxels change. The NZNS

2
voxels are then updated to their new optimal values simulta-
neously before proceeding to the next set of voxels.

2.C. Code architecture

Our code is structured into three kernel launches: backpro-
jection, optimization, and forward projection. A CUDA ker-
nel is a set of instructions that is initiated from the CPU but
which executes on the GPU. Synchronization is guaranteed at
the end of each kernel launch assuming a single stream is
used because all cores in the GPU finish processing and flush

memory updates. Each series of the three kernel launches is
performed for each set of NZNS

2 voxels. When all voxels in the
volume have been updated once, the iteration is considered
complete.

CUDA kernels are called using blocks of threads, also called
threadblocks. A threadblock is assigned to a streaming multi-
processor (SM). Modern GPUs house approximately 30 physi-
cal SMs. Depending on the number of threads present, full
utilization of a SM may require multiple assigned threadblocks.
We structured our code such that each threadblock operates on
a single (x, y) column, with member threads indexing over dif-
ferent z-coordinates. In backprojection and forward projection,
each threadblock iterates over only a fraction of the available
views. This allows several threadblocks (about 10) to be
assigned to each (x, y) column. With this architecture, expected
NS ~ 16 to yield approximately 160 threadblocks, which would
be sufficient to saturate the SMs on the GPU.

The first kernel to be called is the backprojector. In the
context of ICD, this means that this kernel calculates the data
fidelity term, y� Axð ÞTD y� Axð Þ of Eq. (1), for a specific
voxel. The expression y� Axð ÞTD y� Axð Þ can be recognized
as a quadratic form in x, and when regarded as a function of a
single voxel, it reduces to a simple parabola. Therefore, the
backprojector calculates the linear and quadratic terms of the
parabola. The constant term of the parabola is ignored
because it is irrelevant for the purpose of optimization. While
we use the term “backprojection” in analogy with its usage
elsewhere in CT physics, a standard backprojector of the
residual sinogram computes only a gradient term. In this
work, the backprojector additionally computes the quadratic
term, which is necessary to characterize the cost function and
perform a full minimization. It should be pointed out that
both the backprojection and forward projection are encoded
using the SSM, which is the A matrix. To accelerate access
from the SSM, the backprojector first caches entries from the
SSM in shared memory. Individual threads accumulate the
backprojection over several views and then write to global
memory using atomic operations, which ensures that only
one thread can update a value at a time.

The optimization kernel calculates the optimal value of
the voxel using both the regularizer and the data fidelity para-
bola. Because we used a quadratic regularizer, the sum of the
regularizer and data fidelity term is simply the sum of the
individual parabolas, and the minimizer of the parabola can
be calculated analytically. If a nonquadratic regularizer were
used, brute force search or the bisection algorithm could be
used to find the optimum. The bisection algorithm would
exploit the fact that a convex objective function has only one
minimum to progressive narrowly the search region. When
generalized to a GPU with many parallel processors, a gener-
alized k-section algorithm may be able to more efficiently
find the optimum. We made no attempt to accelerate this ker-
nel because the execution times of backprojection and for-
ward projection are an order of magnitude slower.

The forward projector kernel updates the sinogram entries
using the new optimal value of the kernel. Because multiple
threads could conceivably write to the same sinogram entry,

TABLE I. Parameters of the pediatric dataset and reconstruction. “Average
entries per voxel in SSM” refers to the average number of nonzero entries of
the stored system matrix (SSM), which is the number of rays that intersect
the average voxel according to the model of forward projector physics.

CT scanner Definition AS

Detector size (pixels) 736 9 16

Views per rotation 1152

Total number of views 13860

Helical pitch 1.0

Reconstruction matrix 512 9 512 9 128

Voxel dimensions (mm) 0.98 9 0.98 9 1.5

Average entries per voxel in SSM 6952

Maximum entries per voxel in SSM 10252

Quadratic regularizer strength k 0.1

Total stored system matrix size 21 GB

Reconstruction GPU GTX 1080
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atomics are used. From a memory bandwidth perspective, the
forward projector is the slowest kernel because each sinogram
entry must be first read and then written to global memory.
The required memory bandwidth is twice that of the backpro-
jector, and the use of atomics imposes a further speed penalty.

In the first iteration of ICD, the error sinogram y� Ax is
calculated as the difference between the raw data sinogram
and the forward projection of the starting guess. The backpro-
jector and optimization kernels are skipped. The original raw
data sinogram, y, is discarded in subsequent iterations, as
only the error sinogram y� Ax is used in Eq. (1).

As previously described, the SSM is typically too large to
fit into the GPU. Chunks of the SSM are sequentially trans-
ferred onto the GPU. Each chunk represents a subset of the
voxels in the xy-plane, and when the entire subset of voxels is
updated, the next chunk is transferred onto the GPU. This
assumes the entire SSM can fit into CPU RAM. If the SSM
is too large and must be cached to disk, the read times for the
SSM will create a significant bottleneck. Other investigators
have modified the SSM to allow storage on the GPU,27 but
this is equivalent to modifying the forward projector physics
and may not be desirable. The transfer times of the SSM
chunks onto the GPU can be masked using CUDA streams,
but this was not implemented in our current code because the
acceleration potential would be modest. For an SSM of 10
GB, masking transfer times would improve performance by
about 1 s per iteration.

2.D. Memory access strategy

The single most important optimization in our code is to
coalesce memory accesses. Data are retrieved from GPU RAM
in transactions of 128 adjacent bytes. If only a single 4-byte
variable is used, then the remaining 124 bytes are discarded
and the memory bandwidth of the GPU is underutilized. In
most codes, the sinogram is stored with the channel direction,

row direction, or view direction as the fastest changing index.
Our threadblock architecture is such that, in most cases, when
one thread requests access to a ray through a voxel at (x, y, z),
the next thread will request the corresponding ray through the
voxel at (x, y, z + 2) considering that we are reconstructing
every other voxel in the z-direction. By helical symmetry, the
two rays will have identical channel and row indices, but their
view indices will be different. We recall that in the derivation
of the SSM using helical symmetry, assuming a reconstructed
slice thickness of dz and a table translation of dv per view, the
separation in the view direction between adjacent slices is the
integer Nsep ¼ dz=dv. Therefore, the crucial optimization in
our code is to shuffle the sinogram data such that the fastest
changing index is 2Nsep in the view direction. A similar idea
has been used elsewhere.25,26 This ensures that sequential
threads access sequential data in memory and drastically
increases the fraction of memory access that is usable to the
program. Note that this strategy cannot be used for axial scans.
More generally, the strategy of precomputing and storing the
system matrix is impractical for most axial reconstructions.

Figure 1 illustrates this memory shuffle technique graphi-
cally. The impact of this technique is significant in codes that
are limited by memory bandwidth. In the most extreme case,
a program entirely bound by memory bandwidth could be
accelerated by a factor of 32, because 128 bytes (32 floats)
will be retrieved but only one is used. Figure 1 depicts a
geometry where the acceleration factor would be up to 16,
because each transaction would result in two useful floats. In
practice, considering cache effects, misalignment, and other
bottlenecks on computation, the acceleration factor will be
smaller but may still approach an order of magnitude.

2.E. Experiments

We used a pediatric dataset in our evaluation experiments.
The details of this dataset and the relevant reconstruction

FIG. 1. Memory shuffle technique on a hypothetical system with a small dataset. A column of voxels sharing the same (x, y) coordinates but different z-coordi-
nates is selected, and CUDA threads operate on every other voxel. Skipped voxels are shaded in gray. Arrows point to the entries in the sinogram that must be
accessed by the threads in order to perform projection. (Left) With conventional indexing, threads access sinogram elements at intervals of a fixed distance. If the
fastest changing index is the view direction, this distance is 2Nsep. We use Nsep ¼ 8 in this figure for compactness. Not all voxels are shown. The numbers in each
box represent the index of the voxel. (Right) With the memory shuffle, the sinogram entries are permuted such that threads access sequential sinogram elements,
causing these memory accesses to coalesce into a single transaction.
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parameters are shown in Table I. We structured our codes to
match the reference code, FreeCT_ICD, and one of our pri-
mary goals was numerical agreement with the reference code
when both programs were run to convergence. The current
release of FreeCT_ICD does not implement statistical data
weights, so we did not include them in our codes either. We
used a quadratic regularizer in this work, although Free-
CT_ICD also supports other options. We used a variant of
Joseph’s method for the system matrix22 and assumed that
these data were precomputed and already loaded into RAM
for timing purposes. Generation of the system matrix was
done using FreeCT_ICD and was cached to disk. The average
number of entries per voxel in the SSM is about six per view.
In a voxel-driven backprojector where the center of each
voxel is projected onto the detector and bilinear interpolation
is applied, we expect four entries per view in all cases. Con-
ceptually, the variant of Joseph’s method that we are using is
similar to the distance-driven28 or separable footprints29 pro-
jectors in that voxels with large magnification factors (close
to the x-ray source) are more involved. For example, a 1 mm
voxel close to the source may present a 2.5 by 2.5 mm foot-
print on the detector, which (assuming 1 mm detector pixels)
would require nine SSM entries in that view. See Hahn et al.
(38) for a recent discussion on forward projectors.

We initialize the volume to an FBP reconstruction and
update the voxels according to a schedule that visits each
voxel in a random order, but visits all voxels once in each iter-
ation.1 In contrast to the previously released FreeCT, released
in C++, our code was implemented in MATLAB to handle
data I/O and problem setup. The GPU codes were written as
a MEX file that was compiled with CUDA libraries.

Like in all MBIR methods, there are nonphysical artifacts
in the outermost slices because the data are incomplete for
these slices. When evaluating the quantitative RMS differ-
ence between two volumes, we discard the outer 32 slices on
each side.

2.F. Theoretical performance limit

The computational performance of MBIR can be limited
by its code architecture and the details of its implementation.
A poorly written implementation may introduce bottlenecks.
We compare the run time of our implementation to

predictions from the memory bandwidth specification. We
used a single NVIDIA GTX 1080, which has a memory
bandwidth of 320 GB/s that is calculated from its memory
clock rate of 10 GHz and a 256 bit wide memory interface.
We emphasize that the memory bandwidth is derived directly
from the hardware specification of the memory unit, and any
program (even direct memory copy) cannot achieve 100% of
the memory bandwidth due to overhead.

From Table I, we calculate that in each iteration, a total of
512 9 512 9 128 9 6952 entries must be read from the
sinogram during backprojection. Considering the size of the
single-precision float (4 bytes) and the memory bandwidth of
320 GB/s, an ideal backprojector limited only by memory
bandwidth would require 2.9 s. The forward projector, which
uses both a read and write, would require 5.8 s. However,
these numbers ignore memory alignment. In most cases, the
requested memory accesses will not be aligned. A float is
fetched for every other slice, leading to a total request of 256
contiguous bytes. If the memory address of the first byte is an
integer multiple of 128 bytes, the request is aligned and can
coalesce into two 128-byte transactions. In other cases, a third
transaction is needed. Hence, a more realistic bound for the
forward projector and backprojector speed will be 50%
slower at 4.4 and 8.7 s, respectively.

3. RESULTS

3.A. Agreement with reference code

Figure 2 shows a comparison between our code and the
reference FreeCT_ICD when both codes are run with 400
iterations. FreeCT_ICD uses a lexicographical update scheme
and our code uses a random update scheme, so it is not true
that the two codes should match to within numerical preci-
sion. Instead, we expect differences to appear because of the
differences in update order as well as the approximation of
the simultaneous update of NS = 16 in-plane voxels. The
RMS difference (RMSD) between the two after 400 iterations
each is 1.8 HU. Figure 3 shows a histogram of these differ-
ence values, showing a very strong peak at 0 HU with long,
symmetric tails in each direction. The accelerated GPU ICD
code required 133 min for 400 iterations, compared to 256 h
for FreeCT_ICD, yielding a speedup factor of 1159.

FIG. 2. Comparison of (left) FreeCT ICD reconstruction with 400 iterations, (middle) accelerated GPU ICD reconstruction with 400 iterations and NS = 16, and
(right) difference image on a pediatric thorax dataset. Reconstructions are with (WL, WW) = (0, 800) HU. Difference image is with (WL, WW) = (0, 50) HU.
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Figure 4 shows the RMSD between GPU ICD and the
400 iteration FreeCT_ICD reference reconstruction as a
function of iteration count. We used NS = 16 in these plots.
Our timing results do not include initialization steps,
including reading the raw data and SSM, shuffling the
sinogram, and transferring this data onto the GPU. This
overhead currently requires about 5 min and has not been
optimized. At 4 min, the code has processed 12 iterations
with an RMSD of 9.5 HU. Reaching convergence to within
5 HU RMSD requires substantially longer, about 42 itera-
tions or 14 min. It can be seen in Figure 2 that the RMSD
is larger in the patient body compared to the surrounding
air. Figure 4 also shows the RMSD in the patient body
only. Reaching 10 HU RMSD within the patient body takes
many more iterations.

3.B. Impact of multiple simultaneous update

Table II and Figure 5 summarizes the results for changing
the NS parameter. As expected, we found that the speed
depends strongly on NS for small NS because more SMs can

be recruited to work in parallel. Above NS = 16, however, the
performance plateaus as all SMs are at capacity. At
NS = 1024, divergence occurs at hundreds of iterations
although the RMSD at 20 iterations or less is not much worse
than NS = 1. At NS = 4096, divergence occurs immediately
with rapidly escalating RMSD values. The initial RMSD
between the FBP starting guess and the FreeCT reference
reconstruction at 400 iterations is 51.7 HU.

3.C. Code profiling

To understand the computational limitations of our code,
we profiled the four steps of our algorithm in Table III with
NS = 16. These times were estimated by running variations of
the accelerated GPU ICD code with certain kernels omitted
and averaging execution times over 10 iterations. The first iter-
ation, which does not include backprojection kernels or opti-
mization kernels, was omitted from these timing results. The
backprojection and forward projection require 11% and 41%
more time than an idealized kernel that is subject only to mem-
ory bandwidth and the penalty for misaligned data access.

3.D. Sensitivity analysis

To assess the possible dependence of the code on acquisi-
tion factors such as helical pitch, source-to-isocenter distance,

FIG. 3. Histogram of the difference between FreeCT ICD and the accelerated
GPU ICD at 400 iterations. The total number of voxels in this histogram is
1.65 9 107. The bin at 0 HU extends to 1.25 9 107 and represents 75% of
the voxels in the volume. Only 8% of the bar height is shown, with the
remaining height truncated, in order to allow visualization of the other bars.
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FIG. 4. Convergence of the accelerated GPU ICD code as a function of wall
time with NS = 16. Each marker corresponds to two iterations, with the first
visible marker corresponding to four iterations.

TABLE II. RMS difference in HU between our accelerated GPU ICD code
and the nearly converged reference FreeCT_ICD code at 400 iterations. Con-
vergence is maintained until NS > 1024.

RMSD,
5 iterations

RMSD,
20 iterations

RMSD,
400 iterations

NS = 1 17.4 7.23 1.77

NS = 4 17.4 7.24 1.77

NS = 16 17.4 7.24 1.77

NS = 64 17.5 7.26 1.79

NS = 256 17.5 7.35 1.85

NS = 1024 18.1 7.93 4704

NS = 4096 910 9350 –

FIG. 5. Execution times for 10 iterations of GPU ICD for various values of
NS.
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and number of detector rows, we reprojected the converged
FreeCT volume under a new acquisition geometry to create
synthetic data. We then reconstructed this synthetic data
using the initial FBP volume as a starting guess. The purpose
of these experiments were to understand if variations in
acquisition protocol would cause the optimization to slow
down, not to assess convergence properties, which would be
unrealistic given the nature of synthetic data. Table IV shows
these reconstruction times. The run time for each iteration
scales with the size of the SSM. Reducing the helical pitch
from 1.0 to 0.6, for example, increases the SSM size by 67%,
leading to an increase in time per iteration of 61%.

4. DISCUSSION

We have demonstrated an adaptation of MBIR using ICD
for GPUs, achieving a reconstruction time of approximately
4 min for a 512 9 512 9 128 dataset and converging within
10 HU RMSD. Alongside other recent literature,18–20 this
work challenges the longstanding assumption that ICD for
CT image reconstruction is not compatible with parallel com-
puting platforms such as the GPU. In contrast to other exist-
ing work, we demonstrated our ICD code on a diagnostic
helical CT dataset. Sabne et al. implemented ICD for a two-
dimensional parallel-beam scan only.18 They used thread-
blocks that operated on overlapping supervoxels to obtain
parallelism. The optimizations necessary in two dimensions
are very different from three dimensions. On one hand, the
third dimension provides a very natural avenue for paral-
lelism. On the other hand, two-dimensional data have a

greater amount of memory reuse and the L2 cache can be
used to reduce memory reads from RAM. Sabne et al. also
updated multiple voxels simultaneously but did not analyze
convergence effects. Ha and Mueller,20 in comparison,
applied ICD to update multiple voxels in the z-direction only,
as has been suggested by previous authors.31 They demon-
strated their algorithm on an axial CBCT scan only. They did
not attempt to update multiple in-plane voxels simultaneously
due to reasons of convergence. They ordered sinogram data
so that the row direction was the fastest changing index to
improve memory access. This works well for axial scans but
is expected to achieve lower efficiency for diagnostic, helical
CT.

The optimization providing the largest speedup in our
code was to reorder the sinogram so that memory accesses
coalesce. A similar optimization has been used in other back-
projection work.25 A second optimization was the simultane-
ous update of multiple voxel columns, which breaks
convergence guarantees that have traditionally been present
in ICD. However, the ordered subsets technique15 is used
extensively in simultaneous update MBIR and is known to
converge at best to a limit cycle, not the true minimum of the
objective function. Also, MBIR is not run to convergence in
clinical practice but terminated when the reconstruction is of
sufficient quality. We find that a wide range of NS values are
available that achieve both sufficient parallelization and good
convergence properties. On this dataset, any NS value
between 16 and 256 saturated the GPU while having minimal
impact on convergence.

The run times reported here can be compared with other
published work in MBIR. However, unless the dataset, target
image, and system matrix are standardized, a fair comparison
cannot be made. This standardization effort has occurred in
the RabbitCT challenge for cone beam CT,33 but no equiva-
lent exists for MBIR in diagnostic CT geometries. Therefore,
only rough comparisons can be made. In this work, we recon-
structed a 736 9 16 9 13860 dataset to 512 9 512 9 128
with 10 HU RMSD in 4 min. Kim et al., in demonstrating
ordered subsets with momentum, reconstructed a 888 9

64 9 2934 dataset to 512 9 512 9 154 with 10 HU RMSD
in 4 min.16 McGaffin and Fessler used a single GPU to
reconstruct an 888 9 32 9 6852 dataset to a 512 9 512 9

109 reconstruction in 10 HU RMSD within 3 min.17 We reit-
erate that exact comparisons cannot be made across these dif-
ferent datasets, but it can nonetheless be seen that our
computational performance is comparable with existing
simultaneous update approaches. In particular, our current
codes do not use statistical weights or more complex regular-
izer functions1 that may be costly to compute.

Statistical weights may especially affect convergence rates.
Statistical weights were not included in our code because they
are not yet featured in our reference FreeCT ICD code. The
weights used in the original MBIR development1 and in
accelerated versions16 are not simply the inverse of the vari-
ance and have not been disclosed, which complicates com-
parisons. Intuitively, one may expect that rays with small
weights will be slow to propagate their information into the

TABLE III. Amount of time spent in each step of the accelerated GPU ICD
code. The “bound” column refers to an ideal program that is limited only by
the nominal memory bandwidth of the GPU with the additional penalty for
misaligned data access, as described in Section 2.F.

Step Time per iter (s) Bound (s)

SSM copy 2.0 –

Backprojection kernel 4.9 4.4

Optimization kernel 0.6 –

Forward projection kernel 12.3 8.7

Total 19.7 13.1

SSM, stored system matrix.

TABLE IV. Sensitivity of run time on acquisition protocol factors. We used
NS = 16 in all these experiments. The code was run for 20 iterations. SID is
source-to-isocenter distance. SSM size is the number of entries in the stored
system matrix for the average reconstructed voxel.

Change Pitch Rows SID (cm) SSM size Time per iter (s)

Baseline 1.0 16 59.5 6952 19.9

Reduced Pitch 0.6 16 59.5 11594 32.1

Reduced SID 1.0 16 49.5 7498 22.5

32-slice 1.0 32 59.5 6453 19.0

SSM, stored system matrix.
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reconstruction compared to rays with large weights. The
inclusion of highly heterogeneous statistical weights may
reduce the maximum allowed NS value prior to convergence.
Other geometries may also decrease the maximum allowed
NS. However, even if the maximum allowed NS would be to
reduced by an order of magnitude from 256 to 25, it would
still be above our choice of NS = 16 which saturates the
GPU.

As shown in Section 3.C, there is limited room for further
improvement in our execution times. The SSM copy times
can be hidden using CUDA streams. The backprojection ker-
nel is close to its theoretical bound when considering the
impact of memory alignment. The forward projector is
slower, possibly due to the extensive use of atomic updates.
With a precomputed voxel update schedule, it may be possi-
ble to eliminate atomic writes by decomposing a forward pro-
jection step into two or more discrete kernel calls, with the
SSM structured such that a detector pixel is guaranteed to be
updated once per kernel call. The maximum improvement
possible, however, is small because the forward projector is
also within 40% of its theoretical bound. This suggests that
drastic improvements in performance requires re-architecture
of the underlying algorithm. One such option is block-based
ICD,34 which uses memory more efficiently to update multi-
ple voxels. Another option that has been exploited on the
CPU is NU-ICD, which updates voxels according to expected
improvement in cost function.32 It would be more challenging
to implement NU-ICD with our current approach because we
update columns of voxels in the z-direction simultaneously.

Our algorithm inherits some limitations from the current
FreeCT_ICD reference code. The direct output of this code is
in a rotating frame of reference and requires derotation prior
to storage, leading to possible resolution loss, but encourag-
ing results in this aspect were previously shown.22 As with
FreeCT_ICD, run times are proportional to the SSM size.
The SSM size is inversely proportional to the pitch. Including
focal spot wobble in either the z- or x- directions would simi-
larly increase the SSM size. We did not use statistical
weights, and we use a variation in Joseph’s projector. The use
of a more sophisticated projector29 could potentially improve
reconstruction characteristics, but data on this question are
conflicting.35,36 Conversely, a memory efficient projector
would increase speed but would also approximate detector
physics.27 Wang et al. similarly found that using an approxi-
mate projector model allowed for much higher speed.37 Note
that the intention of the memory efficient system matrix pro-
posed by Guo and Gao27 was to allow the SSM to reside on
the GPU. In our architecture, the SSM resides in CPU RAM
and is moved in chunks to the GPU during each iteration. A
smaller SSM would directly translate to reduced memory
bandwidth requirements.

In summary, we have demonstrated that ICD for MBIR
can be adapted onto GPUs for reconstructing diagnostic, heli-
cal CT datasets. These are interim results of the FreeCT pro-
ject,22,23 and in future work, we plan to validate these codes
against product reconstructions on clinical datasets and to
release them publicly for academic research.
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